Compact quotients by C∗-actions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torus actions on compact quotients

For a reductive Lie group G and a uniform lattice Γ in G we consider the compact space Γ\G. We fix a maximal torus H in G and consider its action on the compact quotient Γ\G. Assuming H to be noncompact we will prove a Lefschetz formula relating compact orbits as local data to the action of the torus H on a global cohomology theory (tangential cohomology). The compact orbits are parametrized mo...

متن کامل

Continuous Quotients for Lattice Actions on Compact Spaces

Let Γ < SLn(Z) be a subgroup of finite index, where n≥5. Suppose Γ acts continuously on a manifold M , where π1(M) = Z n, preserving a measure that is positive on open sets. Further assume that the induced Γ action on H(M) is non-trivial. We show there exists a finite index subgroup Γ′ < Γ and a Γ′ equivariant continuous map ψ :M→Tn that induces an isomorphism on fundamental group. We prove mor...

متن کامل

Quotients by C * X

Let T * C* x C* act meromorphically on a compact Kahler manifold X, e.g. algebraically on a projective manifold. The following is a basic question from geometric invariant theory whose answer is unknown even if .Vis projective. PROBLEM. Classify all T-invariant open subsets U of X such that the geometricquotient U —> U/Texists with U/Ta compact complex space (necessarily algebraic if Xis). In t...

متن کامل

Quotients by non-reductive algebraic group actions

Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions,...

متن کامل

Segal–bargmann Transform for Compact Quotients

Abstract. Let G be a connected complex semisimple group, assumed to have trivial center, and let K be a maximal compact subgroup of G. Then G/K, with a fixed G-invariant Riemannian metric, is a Riemannian symmetric space of the complex type. Now let Γ be a discrete subgroup of G that acts freely and cocompactly on G/K. We consider the Segal–Bargmann transform, defined in terms of the heat equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1984

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1984.114.149